
MPI: 25 Years of Progress

Anthony Skjellum
University of Tennessee at Chattanooga

Tony-skjellum@utc.edu 

Formerly: LLNL, MSU, MPI Software Technology, 
Verari/Verarisoft, UAB, and Auburn University 

Co-authors: Ron Brightwell, Sandia  
Rossen Dimitrov, Intralinks



MPI: 25 Years of Progress

Anthony Skjellum
University of Tennessee at Chattanooga

Tony-skjellum@utc.edu 

Formerly: LLNL, MSU, MPI Software Technology, 
Verari/Verarisoft, UAB, and Auburn University 

Co-authors: Ron Brightwell, Sandia  
Rossen Dimitrov, Intralinks



Outline

l Background
l Legacy
l About Progress
l MPI Taxonomy
l A glimpse at the past
l A look toward the future



Progress

l 25 years we as a community set out to 
standardize parallel programming

l  It worked J
l Amazing “collective operation” (hmm.. 

still not complete)
l Some things about the other progress 

too, moving data independently of user 
calls to MPI…



Community

l This was close to the beginning…



As we all know (agree?)
l  MPI defined progress as a “weak” 

requirement
l  MPI implementations don’t have to move the 

data independently of when MPI is called
l  Implementations can do so
l  There is no need for an internally concurrent 

schedule to comply 
l  For instance: do all the data movement at 

“Waitall” … predictable if required only to be 
here!



How programs/programmers 
achieve progress
l The MPI library calls the progress 

engine when you call any of most MPI 
calls 

l The MPI library does it for you 
▼  In the transport, MPI just shepherds lightly
▼  In an internal thread or threads periodically scheduled

l You kick the progress engine (Self help)
▼  You call MPI_Test() sporadically in your user thread
▼  You schedule and call MPI_Test() in a helper thread



Desirements
l  Overlap communication and Computation
l  Predictability / low jitter 
 
 
 

l  Later: overlap of communication, computation, and 
I/O 

l  Proviso: LJ à Must have the memory bandwidth  
 
 
 
 



MPI Implementation 
Taxonomy (Dimitrov)
l Message completion 

notification
▼  Asynchronous (blocking)
▼  Synchronous (polling)

l Message progress
▼  Asynchronous (independent)
▼  Synchronous (polling) 

blocking
independent

polling
independent

blocking
polling

all-polling



Segmentation

l Common technique for implementing 
overlapping through pipelining

Message m

Compute m

Segments
 m/s

Compute m/s
Compute m/s
Compute m/s

m/s
m/s

Entire message Segmented message



Optimal Segmentation

T(s) 

Tno overlap 

Tbest 

s sm sb 1 



Performance Gain from 
Overlapping
l Effect of overlapping on FFT global 

phase in seconds, p = 2

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1 2 4 8 16 32 64

Number of segments

Ex
ec

ut
io

n 
tim

e 
[s

ec
]

1M p=2

2M p=2

4M p=2

size Max 
speedup

1M 1.41

2M 1.43

4M 1.43



Performance Gain from 
Overlapping (cont.)
l Effect of overlapping on FFT global 

phase in seconds, p = 4

size Max 
speedup

1M 1.31

2M 1.32

4M 1.33
0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1 2 4 8 16 32 64

Number of segments

Ex
ec

ut
io

n 
tim

e 
[s

ec
]

1M p=4

2M p=4

4M p=4



Performance Gain from 
Overlapping (cont.)
l Effect of overlapping on FFT global 

phase in seconds, p = 8

size Max 
speedup

1M 1.32

2M 1.32

4M 1.33
0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1 2 4 8 16 32 64

Number of segments

Ex
ec

ut
io

n 
tim

e 
[s

ec
]

1M p=8

2M p=8

4M p=8



Effect of Message-Passing 
Library on Overlapping
l Comparison between blocking and 

polling modes of MPI, n = 2M, p = 2

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

1 2 4 8 16 32 64

Number of segments

Ex
ec

ut
io

n 
tim

e 
[s

ec
]

blocking

polling



Effect of Message-Passing 
Library on Overlapping
l Comparison between blocking and 

polling modes of MPI, n = 2M, p = 8

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

1 2 4 8 16 32 64

Number of segments

Ex
ec

ut
io

n 
tim

e 
[s

ec
]

blocking

polling



Observations/Upshots
l Completion notification method affects 

latency of short messages (i.e., < 4k on 
legacy system)

l Notification method did not affect 
bandwidth of long messages

l Short message programs
▼  Strong progress, polling notification

l Long message programs
▼  Strong progress, blocking notification



Future (soon?)
l  MPI’s support overlap and notification mode well
l  Overlap is worth at most a factor of 2 (3 if you 

include I/O)
l  It is valuable in real algorithmic situations
l  Arguably growing in value at exascale
l  We need to reveal this capability broadly without 

the “Self help” model



Thank you

l 25 years of 
progress

l And still going  
strong…

l Collective!
l Nonblocking?
l Persistent!
l Fault Tolerant?


